随着汽车上电子控制装置越来越多,车身布线也愈来愈复杂,使得运行可靠性降低,故障维修难度加大。为了提高信号的利用率,要求大批数据信息能在不同的电控单元中共享,同时汽车综合控制系统中大量的控制信号也能实时进行交换。但是,传统的汽车电子系统采用串行的方法,如用SAE1587等标准来实施,通信速度较慢、传递的数据量少,远不能满足高速通信的需求。近年来已发展成为汽车电子系统的主流总线,并有基于CAN总线通信协议的车辆应用层通讯标准SAEJ1939[1~4]产生。
利用CAN总线开发的纯电动车(EV)的通信网络具有通信速率高、准确、可靠性高的特点,易于整车控制网络的连接和管理,为传感器信号、各个控制单元的计算信息和运行状态的共享以及随车或离车故障诊断等提供了基础平台,同时开发基于该通信网络的控制器在线标定和实时监测系统也成为可能。
本文采用基于CAN2.0B的SAEJ1939通信协议,以为例,设计开发了应用于EV电控系统的CAN总线通信系统。
1 EV电控系统CAN通信的设计
图1 纯电动车控制系统CAN通信网络拓扑图
1.2 EV电控系统CAN通信的设计
根据CAN通信原理,硬件主要由CAN控制器和CAN驱动器组成。动力控制总成PTCM和电池管理控制模块BPCM采用32位高性能微处理器MC68376上集成的CAN控制器;仪表控制器IPCM模块采用FUJ 32位高性能微处理器上集成的CAN控制器;电机控制DMCM模块、动力转向控制模块和制动控制模块采用SJA1000控制器。CAN驱动器全部采用PCA82C250。
图2是EV的车载CAN通信网络节点连接图,每个总线末端均接有用RL表示的抑制反射的负载电阻。负载电阻连接在CAN-H和CAN-L之间,对于不带集成终端电阻(通常使用)的ECU,此电阻为60Ω;对于带有集成终端电阻的ECU,此电阻为120Ω。终端负载电阻最好置于总线末端,取消ECU内部的负载电阻RL,因为如果其中一个ECU从总线断开,总线将丢失终端。
图2 纯电动车 CAN 通信网络节点连接图
下面以32位高智能微处理器MC68376为例介绍EV电控系统CAN通信的设计。
获取更多评论