固态激光雷达的前世今生

文章来源:雷锋网 发布时间:2017-10-23
分享到
毫无疑问,激光雷达是自动驾驶传感器领域最热门的投资领域之一,几乎每个月都有 1 到 2 笔重大投资。

 

    雷锋网按:本文为雷锋网独家专栏,作者系佐思产研研究总监周彦武,雷锋网经授权发布。

毫无疑问,激光雷达是自动驾驶传感器领域最热门的投资领域之一,几乎每个月都有 1 到 2 笔重大投资。

目前自动驾驶领域传感器主要有摄像头、毫米波雷达和激光雷达组成。如果说激光雷达兼具毫米波雷达和摄像头的功能和优点,又没有它们的缺点,未来自动驾驶只用激光雷达即可。

你肯定会说这不可能,因为现在很多公司都强调多传感器融合。为何激光雷达或一统江山?主要原因还是激光雷达的种类太多,分布十分广泛,性能挖掘潜力巨大。

激光雷达:“三大类”和“四部分”

激光雷达按重点提供的内容可以分为三大类:

一类是类似毫米波雷达,重点提供目标的速度、距离和方位角,如 IBEO 的 4 线或单线激光雷达,某些固态激光雷达也是如此,如通用刚刚收购的 Strobe。

一类是以三维坐标数据合成点云数据为重点输出内容,如 Velodyne 的 16、32、64 线激光雷达,还有固态单光子激光雷达。

最后一类是 2 维或 3 维图像为重点输出内容的激光雷达,大多数 Flash 固态激光雷达都是如此。

当然 64 线激光雷达也可以输出 3 维灰度图像,但目前 64 线激光雷达的首要应用还是点云,某些固态激光雷达也能在输出图像同时提供目标的速度和距离但首要应用还是图像。

这些种类繁多的激光雷达常让人迷惑,但从零部件上划分,总体可分为 4 部分,即发射端、接收端、光学扫描器和光学天线。

发射端主要是激光器,NdYAG 固体激光器、CO2 气体激光器和 GaAlAs 半导体二极管激光器、光纤激光器等最具有代表性。

接收端又可以叫光电探测器,主要有 PIN 光电二极管、硅雪崩二极管 (SiAPD)、硅光电倍增器(SiPM,又叫 MPPC),光电导型碲镉汞 (HgCdTe) 探测器和光伏型碲镉汞探测器。

光学天线则有透射式望远镜(开普勒、伽利略),反射式望远镜(牛顿式、卡塞哥伦),收发合置光学天线,收发分置光学天线,自由空间光路,全光纤光路,波片(四分之一、二分之一)分束镜、合束镜、布鲁斯特窗片。

光学扫描器则有圆柱形(Velodyne),6-12 面多面体型,声子偏转器,压电扫描器,光栅扫描器,光学相位扫描器,MEMS 镜扫描器。

固态激光雷达大多源自三维图像传感器的研究,这种传感器实际源自红外焦平面成像仪,焦平面探测器的焦平面上排列着感光元件阵列,从无限远处发射的红外线经过光学系统成像在系统焦平面的这些感光元件上,探测器将接受到光信号转换为电信号并进行积分放大、采样保持,通过输出缓冲和多路传输系统,最终送达监视系统形成图像。

大部分固态激光雷达则是主动发射激光,激光到达目标后反射回光线到达焦平面。也有某些低成本设计,干脆采用红外二极管发射红外光波,这种已经不能算严格意义上的激光雷达。

「线性模式」与「盖革模式」

实际上,传统的 CCD 或 CMOS 图像传感器也是这样的原理,只不过它们是接收自然光,除此之外唯一的差异在于接收端,CCD 或 CMOS 图像传感器使用的是 PN 型二极管,旋转扫描型激光雷达是使用 PIN 型,而固态激光雷达一般是使用雪崩二极管 APD。

PN 型二极管更容易做到低成本和高像素,但是增益较低,动态范围窄。APD 是一种半导体光检测器, 其原理类似于光电倍增管,在加上一个较高的反向偏置电压后 (在硅材料中一般为 100 到 200 V),利用电离碰撞 (雪崩击穿) 效应, 可在 APD 内部获得电流增益。

APD 的工作模式分为线性模式和盖革模式两种。当 APD 的偏置电压低于其雪崩电压时, 对入射光电子起到线性放大作用, 这种工作状态称为「线性模式」。

在线性模式下,反向电压越高,增益就越大。APD 对输入的光电子进行等增益放大后形成连续电流,获得带有时间信息的激光连续回波信号。

当偏置电压高于其雪崩电压时,APD 增益迅速增加,此时单个光子吸收即可使探测器输出电流达到饱和,这种工作状态称为「盖革模式」。

在盖革模式下,单个光子即可使 APD 的工作状态实现开、关之间的转换, 形成一个陡峭的回波脉冲信号, 因而具备单光子成像的能力。

总的来说,盖革模式 APD 具有单光子探测能力, 但是其需要淬火电路,且虚警率较高,而线性模式 APD 虽然能够获得目标的灰度信息, 但是也有相对盖革模式增益较低的缺点。盖革模式下一般称之为「单光子激光雷达」。

单光子激光雷达是一种能够彻底颠覆空战格局的雷达,由于其灵敏度极高,探测距离理论上可以非常远,三千公里都不成问题,这点在军事上非常有价值,F-22、B-2 等飞机高超的隐身性能,几乎使现役雷达和光电探测系统变成「瞎子」。

但单光子探测系统极高的探测灵敏度,即使对 F-22、B-2 这样的隐身飞机,作用距离也可达到几百到几千公里,可在极远距离上发现隐身飞机,使其「无处遁形」。利用空中平台或临近空间平台配装单光子探测系统,构建单光子探测网络,只需几部单光子探测系统就可实现对领空的全域覆盖。

在此基础上用地面或空中远程导弹构建空中地面联合火力网,把单光子探测网络作为网络中心战的目标探测网络系统,可对任何位置(地面或空中)发射的导弹进行目标指引,有效攻击全球目标,实现「全球感知,全球打击」。将空战由超视距作战改为超超视距作战。

单光子激光雷达用在自动驾驶上,将提供超高密度的点云,达到 128 线甚至 256 线的效果,当然,它无法做到 360 度。

*图为 APD 3D 成像原理图

自 1993 年开始,美国国防部开始资助美国 MIT 的林肯实验室开发单光子激光雷达,这也是目前全球最优秀的单光子激光雷达供应者,1998 年林肯实验室推出第一代样机。第一代样机原理图如下:

2001 年推出第二代,2003 年推出第三代。2010 年则首次将单光子激光雷达装在喷气式飞机上实验。系统挂载在喷气式飞机机腹位置, 对地面进行主动激光照射并三维成像,同时在系统内融合 GPS /IMU 信息, 实现对地面的侦察与测绘。

探测器是 32 × 128 的 InP /InGaAsP 盖革 APD,激光器工作波长为 1500nm,能够全天时在 3 公里高空对地面进行 2000 km /h 的快速三维成像, 距离精度为 0.3 m。

*对地成像

此后直到 2015 年,MIT /LL 在激光三维成像雷达方面的研究工作主要集中在开发性能更佳的近红外波段响应 InP /InGaAs APD 阵列。近红外波段的激光人眼安全并具备隐蔽性, 能够通过提高功率的方式获得更佳的探测性能。

目前林肯实验室可以提供 256*256 精度,预计到 2018 年可以达到 1024*1024 的精度,完全达到实用级别。2003 年日本防卫省科技研究院实验成功了 35*35 精度的单光子激光雷达,目前估计也达到 256*256 的精度,但已经属于军事机密。

2005 年德国知名导弹制导系统大厂,代傲国防系统实验室完成单光子激光雷达识别导弹真假弹头的实验,有助于远距离启动拦截导弹。

单光子激光雷达与线性固态激光雷达

上图是丰田于 2013 年开发的基于 SiSPAD (硅单光子)的激光雷达原型。水平角分辨率高达 0.05 度,水平 FOV 为 170 度,垂直 FOV 较差,仅为 4.5 度。采用了少见了 870 纳米激光,脉冲带宽为 4 纳秒,每秒高达 8 亿 TOF,云点数为 326400,云点密度大约是 Velodyne VLP16 的 13 倍。

单光子激光雷达缺点是,存在死时间效应。GM(盖革)-APD 饱和后需要一定时间才能恢复原来状态,为使其可以连续正常工作需要采用淬火电路对雪崩进行抑制。此外,GM-APD 有极高的灵敏度,其最噪声因素更加敏感,通道之间串扰更严重。

线性模式 APD 阵列的优点如下:光子探测率高,可达 90% 以上;有较小的通道串扰效应; 具有多目标探测能力; 可获取回波信号的强度信息; 相比于 GM-APD,LM-APD 对遮蔽目标有更好的探测能力。

缺点是灵敏度低于 GM-APD;读出电路的复杂度大于 GM-APD(需对输入信号进行放大、滤波、高速采样、阈值比较、存储等操作)。

单光子的优点主要是云点高密度和适应载体(飞机或导弹)的高速移动,还有就是读出电路简单,周边电路成本低,缺点是信噪比不够高,也没有激光回波的强度信息,也就是无法取得灰度图像,也无法单靠强度就识别树木,草地,建筑物和道路,也很难对应多个目标。

线性 APD 的缺点是读出电路复杂,成本高。再有就是单光子属于敏感的军用元件,全球各国都严格控制,不易取得稳定,大量的供应渠道。因此丰田在 2017 年还是转向线性 APD,投资了 Luminar。

线性 APD 固态激光雷达起源自美国 NASA 的火星探测计划,为保证飞行器在火星表面安全着陆,需要一套三维成像雷达系统,为飞行器降落选择合适的着陆点。

这项工作在 2003 年委托 ASC(Advanced Scientific Concepts) 公司负责,2005 年 ASC 开始为 NASA Langley Research Center(LaRC) 研制自主着陆和避险系统 (Autonomous Landing and Hazard Avoidance technology,ALHAT) 的三维成像雷达系统 GoldenEYE。

2013 年, 该系统挂载在火星漫游车着陆器原型机梦神号 (Morpheus) 上, 在地面模拟月球表面环境测试, 探测器分辨率为 128 × 128,激光器单脉冲能量为 11 mJ, 接收光学系统视场角为 3 度, 帧频为 5 Hz。

飞行器在 200 米以上高空落体, 可以完成在有障碍物的场地自主着陆蔽障工作。 在激光功率一定的情况下, 可以通过将 128 × 128 像元合并为 11 ×11 像元, 通过合并像元的方式提高信噪比, 使雷达成像距离由 1. 8 公里 提升至 20 公里, 完成飞行器的全程自主着陆控制。

ASC 在 2016 年被德国大陆汽车系统公司收购,在 2017 年展出了针对自动驾驶的 3 维成像固态激光雷达。大陆未公布详细参数,推测其最远距离可达 500 米,分辨率达到 256*256。年量产达到 10 万级的话,成本估计在 150 到 200 美元。

但是就目前来看,由于 APD 阵列的非均匀性造成的大多数线性 APD 都只能获得距离像,灰度图像依然存在很多问题。下一步的发展是进一步提高线性 APD 的像元数量并增强一致性,并提高分辨率。

国内固态激光雷达十分落后,都停留在科研院所原型机阶段(包括中科院上海技物所、哈尔滨工业大学、北京理工大学、桂林理工大学、中科院长光所、南京大学等高校),目前最多能达到 8*8 的分辨率,与国外有 15 到 20 年的差距。

收藏
赞一下
0