本报告将自动驾驶领域最为关键的传感器——激光雷达作为中心,通过调研其所扮演重要角色的领域——自动驾驶,以及自动驾驶和激光雷达的国内外发展现状,深入了解激光雷达的技术背景。以目前智能车生产厂家所采用的传感层技术为切入点,通过了解、掌握这些技术的特点、基本原理、适用场景、优缺点,来进一步深入激光雷达,了解其分类、基本工作原理、主要技术指标,对用于智能车的车载激光雷达的主要厂家、产品进行调研,获得主流产品的主要性能指标参数、测试数据等。
一 绪论
1.1 研究背景与意义
早期激光雷达主要用于军事和民用地理测绘(GIS)等领域,比如地质测绘、监测树木生长、测量建筑项目进度等。随着自动驾驶的兴起,对于环境感知要求日趋严格,在自动驾驶架构中,传感层被比作为汽车的“眼睛”,包括车载摄像头等视觉系传感器和车载毫米波雷达、车载激光雷达和车载超声波雷达等雷达系传感器,其中激光雷达已经被广泛认为是实现自动驾驶的必要传感器。相比于其它类型的自动驾驶传感器,如摄像头,激光雷达探测的距离更远,精度更高。相对于摄像头而言,激光雷达由于为主动发射光束,故比较不容易受周围环境如弱光、雨雪烟尘的影响,而且摄像头在进行图像识别处理时需要消耗大量的处理器能力,而激光雷达产生的三维地图信息更容易被计算机解析。相比毫米波雷达,激光雷达的分辨率更高,并且毫米波雷达也不适用于行人检测和目标识别等工作。在自动驾驶领域,激光雷达与其它传感器互为补充,可以有效提高车辆对于周围环境感知的准确度。
本文以目前智能车生产厂家所采用的传感层技术为切入点,通过了解、掌握这些技术的特点、基本原理、适用场景、优缺点,来进一步深入研究其中对于自动驾驶最为关键的传感器——激光雷达,了解其分类、基本工作原理、主要性能指标,对用于智能车的车载激光雷达的主要厂家、产品进行调研,获得主流产品的主要性能指标参数、测试数据等。对车载激光雷达进行仿真,不仅能节省大量的燃料和经费,而且不受天气和场地的限制,因此具有巨大的经济效益。在仿真软件中,可以灵活地设置各种参数、模拟条件,同时也不存在安全隐患,因此具有巨大的社会效益。由于目前国内外对于车载激光雷达仿真系统的研究较少,本文抛砖引玉,尝试归纳、分析上述内容,最终得出车载激光雷达仿真系统的主要技术要求。
1.2 自动驾驶概述
SAE(国际汽车工程师协会)J3016 文件提出的五级自动驾驶分级方案是当前被普遍采用接受的标准,将自动驾驶技术分为 L0 ~ L5 共六个等级。L0 代表没有自动驾驶加入的传统人类驾驶,L1 ~ L5 则将自动驾驶的发展程度进行了分级:
表 1-1 SAE 自动驾驶定义和分级标准
(注:参照[1]中表格修改整理)
2.1 传感器介绍
在自动驾驶技术来临之前,车用传感器即用于汽车电子技术、作为车载电脑(ECU)的输入装置,能够将发动机、底盘、车身各个部分的运作工况信息以信号方式传输给车载电脑,从而使汽车运行达到最佳状态。ADAS(高级辅助驾驶系统)的广泛应用,使摄像头等用于环境感知的传感器进入公众视野,作为辅助,这些传感器将汽车周边的环境信息输入到相应的系统模块中,进行判断,提前给驾驶员预警或提供紧急防护,但不同系统的传感器间关系孤立,数据单独处理,信息尚未形成融合。在自动驾驶汽车中,定位、雷达、视觉等传感器协作融合,能够以图像、点云等形式输入收集到的环境数据,并通过算法的提取、处理和融合,进一步形成完整的汽车周边驾驶态势图,为驾驶行为决策提供依据。
除了激光雷达之外,本文再对摄像头、毫米波雷达、超声波传感器、定位传感器这部分重要传感器作简要介绍:
摄像头:
用摄像头代替人眼对目标(车辆、行人、交通标志)进行识别、跟踪和测量,感知到汽车周边的障碍物以及可驾驶区域,理解道路标志的语义,从而对当下的驾驶场景进行完整描述。摄像头必须先识别再测距,如果无法识别则无法测距。相对于其它传感器,摄像头的价格相对低廉,有着识别车道线、车辆等物体的基础能力,在汽车高级辅助驾驶市场已被规模使用。依据不同的图像检测原理,可分为单目摄像头和双目摄像头,根据芯片类型又可分为 CCD 摄像头和 CMOS 摄像头,等等。其优点在于摄像头是目前唯一能够辨别物体的传感器。
但是摄像头同时具有三个缺点:缺点一是逆光或光影复杂的地方难以使用;缺点二在于依赖于算法,能否辨别物体完全依赖样本的训练,样本未覆盖的物体将无法辨别,比如 Mobileye 在中国道路上应用,识别超载运货车的成功率不超过 80%;缺点三在于摄像头对于行人的识别具有不稳定性,因为行人不同于车辆,动作、服装、身体各部分变化要素很多,而且还要与街上的建筑、汽车、树木等背景图案区分开来,比如 Mobileye 在日本、德国、美国、以色列等国市区的测试结果显示,行人的成功检测率为 93.5%,距离实现完全无人驾驶还有很大差距,再如穿着吉祥物套装或着装颜色与背景相似的人或搬运东西的人极有可能无法识别。因此,摄像头的物体识别功能无可比拟,但由于依赖样本识别物体,以及识别行人具有不稳定性,摄像头应用于测距领域无法保障 100% 的稳定性,在自动驾驶领域脱离激光雷达使用只能应用于 ADAS 而不能应用于完全的无人驾驶。
从硬件方面看,计算机视觉所需的工业摄像头在技术层面相对成熟,具有较高的图像稳定性、高传输能力和抗干扰能力,且单个摄像头成本已降到 200 元以下,因此单车可以配备 6~8 个摄像头覆盖不同角度,天风证券预测,2020 年国内前后装摄像头需求量为 4184 万个。
毫米波雷达
发射 1~10 毫米的电磁波,根据反射波的时间差及强度等来测量距离,汽车毫米波雷达的频段主要在 24 GHz 和 77 GHz。其优点在于性价比较高,探测距离远,精度较高,穿透雾、灰尘的能力强,能够全天候全天时工作,在很多高档轿车里都有应用;缺点是行人的反射波容易被其他物体反射波埋没,难以分辨,无法识别行人,例如采用毫米波雷达和摄像头的感知系统实现自动驾驶的 Tesla,在行人较多的闹市区会自动锁定自动驾驶功能。因此,毫米波雷达在测距领域具有较高性价比,但是其无法探测行人是一个致命弱点,只能应用于自适应巡航系统等 ADAS 系统。目前毫米波雷达市场由国外厂商垄断,国内主要的零部件供应商正在致力于车载毫米波雷达的国产化。79 GHz 毫米波雷达作为未来发展趋势,能更有效地发挥自动驾驶传感器所需的性能。
超声波传感器
发射振动频率高于声波的机械波,根据反射波测量距离。其优点在于探测物体范围极广,能够探测绝大部分物体,且有较高稳定性;缺点是一般只能探测 10 米以内的距离,无法进行远距离探测。因此,超声波雷达广泛应用于倒车雷达,在自动驾驶领域常常作为短距离雷达,应用如自动泊车辅助系统。
定位传感器
可以获得自身相对于全局的位置信息。其优点在于技术较为成熟,能够实现在全局视角的定位功能;缺点在于无法获得周围障碍物的位置信息。往往需要与前几个探障类传感器搭配使用。
2.2 传感器分类
智能车辆的传感器可以分为视觉传感器、定位传感器、雷达传感器、听觉传感器和姿态传感器。其中视觉传感器可以分为单目摄像头、双目摄像头、夜视红外摄像头;定位传感器可以分为惯性导航系统、卫星导航系统(GNSS)、高精度地图、实时动态(RTK)差分系统;雷达传感器可以分为激光雷达和毫米波雷达;听觉传感器可以分为语音识别、声音定位入口;姿态传感器可以分为车载诊断系统(OBD)、CAN 总线、惯性测量单元(IMU)、发动机等汽车工况传感器。主要的传感器为激光雷达、毫米波雷达、摄像头、超声波雷达、GNSS 辅助传感器,其中 GNSS 辅助传感器包括惯性导航系统和 RTK 差分系统。
传感器分类图如下:
2.4 本章小结
3.1 激光雷达分类
对于激光雷达,可以分别按照探测体系、应用方向、线束、基于机械/电子部件分类如下:
四
4.1 模块仿真
本文第 3.2 节详细说明了激光雷达的主要组成模块,在对激光雷达仿真时,可以考虑按模块分类并仿真。
实际的激光雷达是先发射激光束再接收返回的激光束而获取到点的坐标,并且其中还要依靠光学扫描器和光学检测器才能完成这一复杂的过程,而仿真的激光雷达只需要模拟激光器,也就是激光发射装置,进而获取到点的坐标,最后绘制成图即可。根据仿真经验,可以考虑使用 OpenGL 中透视投影的一点透视的方式设置相机视角,然后通过编写 shader 从相机中获取点数据。如图 3-1 所示,透视投影的视线(投影线)是从视点(观察点)出发,所有视线从视点出发,视线是不平行的。所以可以用 OpenGL 的配置透视投影的相机来充当激光雷达的观察方式,然后从相机中设法取出在该视角下观察场景的位置信息即可完成激光雷达的模拟。那么如何设置相机呢?首先,在使用 OpenGL 的透视投影的方式获取点的数据时,根据 HDL-64E 的水平方位角为 360°,垂直方位角为 26.8°,扫描最长距离为 120 m,考虑使用四个相机拼合的方式实现,其中每个相机上仰角度为 2°,下俯角度为 24.9°,水平张角为 90°,远处裁剪处为 120,然后获取数据。
获取更多评论